Hepatitis Delta virus genotype 8 infection in Northeast Brazil: Inheritance from African slaves?

A Hospital Universitário da Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
b São Paulo Institute of Tropical Medicine, University of São Paulo, Brazil
c Department of Infectious Diseases, Medical School, University of São Paulo, São Paulo, Brazil

Article info
Article history:
Received 16 May 2011
Accepted 11 July 2011
Available online 21 July 2011

Keywords:
Hepatitis Delta virus
Hepatitis B virus
HBV
HDV
Genotype
Bayesian analysis
Brazil

1. Introduction
Hepatitis Delta virus (HDV) is a highly pathogenic virus that causes acute and chronic liver diseases. HDV is found only in individuals positive for the hepatitis B virus (HBV) surface antigen (HBsAg) because the virus is defective and needs a helper function provided by HBsAg that is used as its own envelope protein for particle assembly and viral transmission across the human host (Wedemeyer and Manns, 2010).

The prevalence of HDV infection varies according to the geographical area. Around 15 million HDV carriers are estimated worldwide (Rizzetto, 2009). In Brazil, HDV is endemic in some areas of the Amazon region where it is associated with severe forms of the disease (Bensabath and Dias, 1983; Bensabath et al., 1987; Gomes-Gouvea et al., 2008, 2009). In the Amazon region, anti-HD antibodies can be found in up to 34% of HBsAg carriers (Fonseca et al., 1988). Except for the studies done in this endemic region, studies on HDV prevalence in Brazil are scarce (Ferraz et al., 1985; Oliveira et al., 1999; Strauss et al., 1987).

HDV genomes isolated from around the world show 39% divergence over the entire RNA genome. This HDV diversity is currently classified into eight genotypes named HDV-1 to HDV-8. Distinct clinical courses are associated with different HDV genotypes: HDV-1 has been associated with a broad spectrum of pathogenicity, HDV-2 and HDV-4 cause milder forms of liver disease, and HDV-3 has been associated with outbreaks of fulminant hepatitis. The pathogenicities of genotypes 5–8 are not well known.

HDV-1 is geographically widespread (Shakil et al., 1997), but all other genotypes are closely associated with specific geographic areas. HDV-2 and HDV-4 are found in East Asia (Ivaniushina et al., 2001; Lee et al., 1996; Sakugawa et al., 1999); HDV-3 has been isolated in the northern area of South America only (Amazon Basin of Brazil, Peru, Colombia, and Venezuela) (Casey, 1996; Casey et al.,)
In this study we describe the presence of HDV infection in chronic HBsAg carriers from a region in Brazil other than the HDV endemic area and report for the first time the infection with HDV genotype 8 in non-native African populations.

2. Materials and methods

2.1. Patients

A total of 133 patients with chronic hepatitis B virus infection (HBsAg positive for at least 6 months) and followed at the Center for Liver Studies, University Hospital of the Federal University of Maranhão, Brazil, between January 2008 and February 2010 were enrolled in this study. Blood samples were collected and the sera separated and stored at −70 °C.

Patients’ demographic and clinical data were retrieved from their medical files. All patients were from Maranhão, a state in the Northeast of Brazil. Most of them (69.2%) were from São Luís, the state capital, and the remainder were from different regions in the state (Fig. 1).

The status of chronic hepatitis B was defined according to the following criteria:

1. **Inactive carrier**: positive HBsAg, negative HBeAg, positive anti-HBe, normal alanine aminotransferase (ALT) levels, and HBV DNA below 2000 UI/mL.
2. **Chronic hepatitis B**: positive HBsAg, positive HBeAg, high ALT levels or positive HBsAg, negative HBeAg, positive anti-HBe, and HBV DNA higher than 2000 UI/mL.
3. **Hepatic cirrhosis**: positive HBsAg with positive or negative HBeAg regardless of the viral load, signs or symptoms of advanced hepatic disease (ascite and/or presence of esophageal varices), or histological diagnosis of hepatic cirrhosis.
4. **Immunotolerance**: positive HBsAg and HBeAg with normal ALT levels.

This study was approved by the local institution ethics committee and all patients provided informed consent.

2.2. Serological tests

All serum samples were tested for hepatitis B serological markers (HBsAg, total anti-HBc, anti-HBs, HBeAg, anti-HBe) and HDV antibody (anti-HD) using enzyme-linked immunosorbent assay (ELISA) kits (DiaSorin, Italy).

2.3. HDV RNA and HBV DNA amplification and sequencing

Viral nucleic acids were detected by PCR in all samples that were both positive for HBsAg and anti-HD. For this, HBV DNA and HDV RNA were initially extracted using QIAamp DNA mini kit and QIAamp Viral RNA viral mini kit (Qiagen, Germany), respectively, according to the manufacturer's instructions.

A fragment of the delta antigen genomic region (403 nucleotides) was amplified by nested polymerase chain reaction (PCR), as previously described (Gomes-Gouvea et al., 2008). HBV DNA detection was performed by a quantitative in-house real-time PCR assay (sensitivity = 50 UI/mL) (Sitnik et al., 2010). HBV genotypes were characterized by amplifying a nested PCR 1306 nucleotide fragment partially comprising HBSAg and the DNA polymerase coding regions (S/POL) using primers PS3132F/2920R and PS3201F/P1285R. To avoid false-positive results, the precautions and procedures suggested by Kwok and Higuchi (1989) were strictly followed.

Amplified PCR products were purified using ChargeSwitch® PCR Clean-Up Kit (Life Technologies, USA). The sequencing reactions were carried out from both strands using inner primers and fluorescence-labeled deoxynucleotide chain terminators using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA). The sequences were determined in an automated DNA sequencer (ABI Prism 3100 Genetic Analyser, Applied Biosystems, USA). The quality of each electropherogram was evaluated using the Phred-Phrap software and consensus sequences were obtained by alignment of both sequenced strands (sense and antisense) using CAP3 software available at the web page Electropherogram quality analysis Phred (http://asparagin.cenargen.embrapa.br/phph/).

Sequences were submitted to EMBL/GenBank/DDBJ under accession numbers JF298898–JF298900 (HDV sequences), and JF298901–JF298903 (HBV sequences).

2.4. Phylogenetic analyses

Genotyping classification for HBV and HDV was performed on the basis of phylogenetic reconstructions using representative reference sequences from different HDV genotypes (n = 105) and HBV subgenotypes (n = 281) obtained from the GenBank public database (http://www.ncbi.nlm.nih.gov/) (data available upon request). Sequences were aligned using CLUSTAL_X and edited using BioEdit software. Bayesian phylogenetic analyses were conducted using the Markov Chain Monte Carlo (MCMC) simulation implemented in BEAST v1.6.1 (Drummond and Rambaut, 2007). HDV and HBV datasets were analyzed under relaxed uncorrelated lognormal molecular clock using the model of nucleotide substitution (GTR + G + I) obtained previously by Modeltest v3.7 (Posada and Crandall, 1998) and 10 million generations were sufficient to obtain the convergence of parameters. The maximum clade credibility (MCC) tree was obtained from summarizing the 10,000 substitution trees and then 10% of burn-in was removed using Tree Annotator v1.6.1 (Drummond and Rambaut, 2007).

3. Results

Altogether, 133 samples from chronic HBsAg carriers were screened for the presence of antibodies against HDAg by serology. Among these patients, 69 (51.9%) were women and 64 (48.1%) were men; their mean age was 40.4 years (ranging from 13 to 84 years) and in terms of race (based on skin color), 66.2% were brown (pardo), 18.8% were black, and 15% were white. Sixty-nine (52%) patients were inactive carriers, 39 (29.5%) had chronic hepatitis, 15 (11%) had cirrhosis, and 10 (7.5%) were in the immunotolerance phase.

Out of 133 samples, 5 (3.8%) were positive for anti-HD and HDV RNA was detected in 3 (60%) of these anti-HD positive samples. All anti-HD positive patients showed detectable HBV viral load. HBV DNA levels, HBeAg and anti-HBe status, HBV and HDV genotypes, and clinical/epidemiological data of anti-HD positive patients are summarized in Table 1.

A phylogenetic tree constructed with sequences of the partial delta antigen genomic region of HDV RNA is shown in Fig. 2A. The phylogeny showed that from the three sequences characterized in this study, one clustered with HDV-3 and two with African HDV-8. The HDV-3 sequence obtained herein closely grouped with other HDV-3 sequences isolated in the Amazonas state (Western Amazon Basin).

The two HDV-8 sequences from Maranhão state in Brazil showed 78.8–87.7% (mean 83.5%) similarity with the other ten HDV-8 African sequences previously described and 89.4% with...
Fig. 1. Geographic location of Maranhão state in Brazil.

Each other. The 19 amino acids of the L-HDAg carboxyl terminus contained some amino acids that were exclusive for the Brazilian HDV-8 sequences (data not shown).

HBV subgenotypes from these cases were also characterized by phylogenetic analyses (Fig. 2B). The two patients infected with HDV-8 had co-infection with HBV subgenotype D4 (ayw2). The sequence that clustered closer with HBV subgenotype D4 sequences (FJ0100650) was from Boca do Acre, Amazonas state. Other sequences in a closer tree branch also clustering with a high posterior probability value were from Rondônia state, which is close to Boca do Acre.

The single patient infected with HDV-3 was co-infected with HBV subgenotype A1 (adw2). This HBV sequence clustered with other Brazilian sequences from different states and it was closer to two sequences from the Amazon region (Rondônia and Amazonas states) and two other sequences obtained in Rio de Janeiro, Southeast Brazil.

4. Discussion

In this study, we identified the presence of HDV infection in Maranhão state, a region not included in the HDV endemic area of Brazil. A prevalence of 3.8% (5/133) of antibodies against HDV (anti-HD) was found among HBsAg chronic carriers from this region. This prevalence was lower than that found in endemic areas (Amazon region) where the prevalence of anti-HD in HBsAg positive patients reached 34.4% (Fonseca et al., 1988; Viana et al., 2005), but was higher than that already described in regions other than the endemic area (Ferraz et al., 1985; Oliveira et al., 1999; Strauss et al., 1987).

It is noteworthy that most of the anti-HD positive patients found in Maranhão state were from Urbano Santos, a city located in a rural area in the east of the state. These patients were not from the same family and no close relation between them was identified.

The finding of HDV infection in all the three patients from Urbano Santos studied herein emphasizes the need for more careful studies to analyze the epidemiology of hepatitis viruses infection in this area, as our results suggests that this area possibly represents an endemic area for HDV within Maranhão state in Brazil. Additionally, in a detailed medical interview, these patients reported that the occurrence of liver-related complications (especially ascitis and jaundice) has been associated with previous deaths in their families, suggesting that HBV/HDV infection may have been frequent in this area for a long time.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Age</th>
<th>Race</th>
<th>Origin (city)</th>
<th>HBeAg/anti-HBe status</th>
<th>HBV DNA levels (log)</th>
<th>HDV RNA</th>
<th>HDV subgenotype and subtype</th>
<th>HDV genotype</th>
<th>Clinical status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8127</td>
<td>M</td>
<td>41</td>
<td>Brown</td>
<td>Urbano Santos</td>
<td>+/−</td>
<td>3.43</td>
<td>+</td>
<td>D4 (ayw2)</td>
<td>HDV-8</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>8103</td>
<td>F</td>
<td>61</td>
<td>Brown</td>
<td>Urbano Santos</td>
<td>−/+</td>
<td>4.74</td>
<td>−</td>
<td>ND</td>
<td>ND</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>8135</td>
<td>M</td>
<td>53</td>
<td>Black</td>
<td>São Luís</td>
<td>−/+</td>
<td>2.63</td>
<td>−</td>
<td>ND</td>
<td>ND</td>
<td>Inactive carrier</td>
</tr>
<tr>
<td>8022</td>
<td>M</td>
<td>78</td>
<td>Brown</td>
<td>Urbano Santos</td>
<td>+/−</td>
<td>4.91</td>
<td>+</td>
<td>D4 (ayw2)</td>
<td>HDV-8</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>8141</td>
<td>F</td>
<td>50</td>
<td>Brown</td>
<td>São Luís</td>
<td>−/+</td>
<td>2.49</td>
<td>+</td>
<td>A1 (adw2)</td>
<td>HDV-3</td>
<td>Inactive carrier</td>
</tr>
</tbody>
</table>

HBV DNA levels are expressed as log10 UI/ml; ND: not done.

* Based on the skin color.

* This patient lives in São Luís, but was born in Manaus, a city located in the Amazonas State, in the Western Amazon Basin, Brazil.
A recent population-based study evaluating only the populations from the capital cities of Brazil report that only 25% of the population is vaccinated against HBV in the Northeast region (Pereira et al., 2009). Further studies should be done to better evaluate the percentage of susceptible individuals in the Northeast states and to implement HBV vaccination campaigns in these areas, especially in regions where HDV infection is also reported.

In this study, HDV genotype 3 was found in a patient from São Luís, the capital city of Maranhão State. HDV-3 has been observed exclusively in the northern region of South America (Casey et al., 1993; Gomes-Gouvea et al., 2008, 2009; Quintero et al., 2001). This patient lives in Maranhão, but she was born in an HDV endemic region (Amazonas state, Western Amazon region). Thus, she possibly contracted HDV infection there, as the HDV-3 sequence obtained from her sample grouped closer to HDV-3 sequences previously isolated in Amazonas state (Gomes-Gouvea et al., 2009). The genotype A (subgenotype A1) of HBV found in this patient is also frequent in the Brazilian Amazon Basin and has also been found in association with HDV-3 (Gomes-Gouvea et al., 2009). The HBV sequence also clustered with other sequences obtained from the Amazonas state, reinforcing the hypothesis that this patient was most likely contaminated in that region.
Fig. 2. (Continued)
Interestingly, we found an HDV genotype not found before in South America and only reported in individuals from West Africa. Two patients who were born and have always lived in Urbano Santos (Central Africa), reinforcing the African origin of this genotype (Makuwa et al., 2008, 2009).

There are few data on HDV genotype distribution in the African continent. The studies done so far show that HDV-1 is currently the most prevalent genotype, followed by HDV-8, HDV-5, HDV-7, and HDV-6 (Le Gal et al., 2006; Makuwa et al., 2008, 2009; Radjef et al., 2004; Yacouba et al., 2011; Zhang et al., 1996). The new characterized African genotypes (HDV-5 to HDV-8) may represent the ancient genotypes of HDV that were the most prevalent genotypes in the past. Currently, these genotypes are found circulating in limited areas in some regions of Africa for reasons not yet known.

It is estimated that from XVI to XVIII century, millions of Africans were taken to Brazil as slaves (Voyages: The Trans-Atlantic Slave Trade Database. http://www.slavevoyages.org). This group, together with Amerindians and Europeans, represent the three major ancestral roots that originated the Brazilian people (Ribeiro, 2006). In Brazil, and particularly in the Maranhão state, numerous Quilombos (which are communities formed mostly by descendants of African slaves) exist. We have not found any evidence of a recent relation among our patients and the African continent, thus the results suggest that HDV-8 might have come to Maranhão state a long time ago together with Africans taken to Brazil as slaves.

Interestingly, the two cases infected with HDV-8 were also co-infected with HBV subtype D4. This subtype was found previously in two other regions in northern Brazil (Gomes-Gouveia et al., 2009; Santos et al., 2010) and in Haiti, another country where Africans were massively taken as slaves (Andernach et al., 2009). The African slaves who went to northern Brazil and the Caribbean Islands were mostly from the North Atlantic, and far away from the southern African regions that supplied the rest of Brazil (Domíngues da Silva, 2008). Thus, according to historical records, the presence of HBV/D4 in two different regions in Latin America might reflect the origin of slaves and routes of slave traffic ships.

Currently, this subtype is not frequent in Africa and has only been described in Rwanda (Hubschen et al., 2009). Nevertheless, it is possible that this genotype was largely distributed in different regions of the African continent in the past, being later replaced by a different genotype.

Herein we showed that HDV infection is present in the North-west region of Brazil. This is worrisome and highlights the need to implement clinical and epidemiological studies to clarify the presence of HDV infection in areas other than the ones already known as endemic.

The presence of HDV-8 infected individuals in Brazil who have not been in Africa may reflect the close relation with HDV genotypes’ geographic distribution and human migrations.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP 2010/50081-9 and 2010/51208-2, Fundação de Amparo à Pesquisa do Estado do Maranhão – FAPEMAR (APP-2009/00950) and Secretaria de Saúde do Estado do Maranhão – Departamento de Vigilância Epidemiológica.

References

